The effects of climatic change mediated water stress on growth and yield of tomato

Document Type : Research paper

Authors

1 Department of Horticulture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh

2 Agriculture Research System Khyber Pakhtunkhwa, Pakistan

3 Department of Environmental Sciences, COMSATS University, Abbottabad Campus, 22060 Pakistan

Abstract

Climate change especially water stress affects crop productivity in many regions of the world. The current paper assesses the impact of water stress on growth and fruit yield of tomato. Winter cultivar (BARI Tomato-14) was grown under different levels of moisture stress (control, 75, and 50% evapotranspiration moisture) in pot experiment using a randomized complete block design with three replications. The experiment results showed that increased moisture stress progressively reduced plant height (92.73, 90.06, and 75.58 cm), leaf area (198.69, 187.56, and 176.66 cm2), chlorophyll content (47.41, 40.87 and 38.10 mg/g), leaf dry matter (18.07, 16.27, and 12.24%), number of branches (13.55, 12.06 and 10.00) and leaf number (22.93, 22.44, and 20.34) under control 100, 75, and 50% of evapotranspiration conditions, respectively. The result also showed a significant and positive correlation between fruit yield and growth and physiological parameters. The highest correlation was observed between fruit yield and leaf number (r2 = 0.97) followed by chlorophyll content (r2 = 0.95). Consequently, leaf number and chlorophyll content is a suitable index for assessment of water stress and tomato genotypes tolerant.

Graphical Abstract

The effects of climatic change mediated water stress on growth and yield of tomato

Highlights

  • ŸWater stress affects the crop productivity in many regions.
  • A significant and positive correlation exists between fruit yield and growth and physiological parameters.
  • Chlorophyll content is suitable index for assessment of water stress and tomato genotypes tolerant.

Keywords

Main Subjects


Ashraf, M., Akram, N.A., Al-Qurainy, F., Foolad, M.R., 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agron. 111, 249–296.
Birhanu, K., Tilahun, K., 2010. Fruit yield and quality of drip –irrigated tomato under deficit irrigation. Afr. J. Food. Agric. Nutr. Dev.10 (2), 2139-2151.
Boutraa, T., Akhkha, A., Al-Shoaibi, A.A., Alhejeli, A.M., 2010. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah. Univ. Sci. 3(1),39-48.
Conesa, M.R., De La Rosa, J.M., Domingo, R., Bañon, S., Pérez-Pastor, A., 2016. Changes induced by water stress on water relations, stomatal behavior and morphology of table grapes (cv. Crimson Seedless) grown in pots. Sci. Hortic. 202, 9-16.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. Sustain. Agr. 1, 153-188.
Filek, M., Łabanowska, M., Kościelniak, J., Biesaga‐Kościelniak, J., Kurdziel, M., Szarejko, I., Hartikainen, H., 2015. Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. J. Agron. Crop. Sci. 201(3), 228-240.
Gonzalez, A., Bermejo, V., Gimeno, B.S., 2010. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions.J. Agron. Crop. Sci.148: 319–328.
Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L., 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. 103(35), 12987-12992.
Iturbe-Ormaetxe, I., Iñaki, I, Escuredo, P.R., Arrese-Igor, C., Becana, M., 1998. Oxidative damage in pea plants exposed to water deficit or parquet. Plant. Physiol.116: 173-81.
Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., Panneerselvam, R., 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11(1):100-105. ISSN: 15608530
Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., Ebihara, M., Nakaminami, A., Maruo, T., 2017. Responses of Leaf Photosynthesis, Plant Growth and Fruit Production to Periodic Alteration of Plant Density in Winter Produced Single-truss Tomatoes. Hort. J.86, 511-518.
Lahoz, I., Pérez-De-Castro, A., Valcárcel, M., Macua, J.I., Beltrán, J., Roselló, S., Cebolla-Cornejo, J., 2016. Effect of water deficit on the agronomical performance and quality of processing tomato. Sci. Hortic.200, 55-65.
Li, J., Cang, Z., Jiao, F., Bai, X., Zhang, D., Zhai, R., 2017. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci. 16, 82-88.
Pervez, M.A., Ayub, C.M., Khan, H.A., Shahid, M.A., Ashraf, I., 2009. Effect of drought stress on growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pak. J. Agric. Sci. 46, 174-178. ISSN 0552-9034
Schuppler, U., He, P.H., John, P.C., Munns, R., 1998. Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant. Physiol.117(2), 667-78.
Tombesi, S., Frioni, T., Poni, S., Palliotti, A., 2018. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 150, 106-114.
Zahoor, R., Zhao, W., Dong, H., Snider, J.L., Abid, M., Iqbal, B., Zhou, Z., 2017. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 119,  21-32.
Zhang, L., Zhang, L., Sun, J., Zhang, Z., Ren, H., Sui, X., 2013. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci. Hortic. 161, 81-87, 2013.
Zhang, P., Senge, M., Dai, Y., 2017. Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun. Soil. Sci. Plan. 48(6), 624-634.