Kinetic and equilibrium studies of adsorptive removal of sodium-ion onto wheat straw and rice husk wastes

Document Type : Research paper

Author

Assistant Professor, Department of Water Engineering, Razi University, Kermanshah, Iran

10.22034/CAJESTI.2020.06.04

Abstract

The presence of solutes in water and soil resources is one of the main environmental problems of many societies. The purpose of this study was to evaluate and compare the removal of sodium onto the wheat straw and rice husk wastes nanostructured sorbents. This study was conducted in a batch experiment scale with changes in effective factors such as pH (4.3, 5, 6, 7, and 8), contact time (10, 30, 60, 90, 120, and 180 minutes), sorbent dosage (0.3, 0.5, 0.7, 1, 1.3, and 1.6g), and the initial concentration (5, 10, 30, 60, 90, and 120mg L-1) of sodium metal solution were investigated. Sodium adsorption kinetics on the prepared sorbent were examined based on isotherms of absorption equations. The results showed that the adsorption efficiency of the sorbent studied increases the increasing in pH from 3 to 5, but that the metal ion deposited at a pH greater than 5. Increasing the contact time increases the adsorptive efficiency. In addition, efficiency first increased and then, decreased by increasing the amount of Nanometer sorbent. Increasing the initial concentration of sodium from 5 to 120 mg.L-1 for the wheat straw and rice husk wastes sorbents cause decreasing the adsorption efficiency from 85.49 to 68.07% and 89.43 to 68.2% due to lack of sufficient adsorbent higher sodium ion content. Consequently, the adsorption capacity increased from 0.34 to 9.43 mg and 0.36 to 9.43 mg. The data obtained from this research show that sodium adsorption for both sorbents is well suited to the kinetic model of Ho et al. and Freundlich isotherm.

Keywords

Main Subjects


Afkhami, A., Saber-Tehrani, M., Bagheri, H., 2010. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J. Hazard. Mater., 181(1-3), 836-844.
CrossRef    Google Scholar    full-text PDF    Mendeley   
CrossRef    Google Scholar    full-text PDF    Mendeley   
CrossRef    Google Scholar    full-text PDF    Mendeley   
Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., Otero, J., 2002. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenerg., 23(3), 171-179.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Elham, A., Hossein, T., Mahnoosh, H., 2010. Removal of Zn (II) and Pb (II) ions using rice husk in food industrial wastewater. J. Appl. Sci. Environ. Manage., 14(4).
CrossRef    Google Scholar    full-text PDF    Mendeley   
Barka, N., Qourzal, S., Assabbane, A., Nounah, A., Yhya, A.I., 2008. Adsorption of Disperse Blue SBL dye by synthesized poorly crystalline hydroxyapatite. J. Environ. Sci., 20(10), 1268-1272.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., Addou, A., 2008. Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol., 99(17), 8441-8444.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Boparai, H.K., Joseph, M., O’Carroll, D.M., 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater., 186(1), 458-465.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Chatterjee, S., Woo, S.H., 2009. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater., 164(2-3), 1012-1018.
CrossRef    Google Scholar    full-text PDF    Mendeley   
CrossRef    Google Scholar    full-text PDF    Mendeley   
Gao, H., Liu, Y., Zeng, G., Xu, W., Li, T., Xia, W., 2008. Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater., 150(2), 446-452.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.M., Crini, G., 2008. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J. Hazard. Mater., 157(1), 34-46.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., Saini, V.K., 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res., 37(16), 4038-4044.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., Liu, H., 2006. Biosorption of copper (II) and lead (II) from aqueous solution by chaff in a fixed-bed column. J. Hazard. Mater., 133(1-3), 262-268.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Kingston, F.J., Posner, A.M., QUIRK, J.T., 1972. Anion adsorption by goethite and gibbsite: I. The role of the proton in determining adsorption envelopes. J. Soil Sci., 23(2), 177-192.  
CrossRef    Google Scholar    full-text PDF    Mendeley   
Juang, R.S., Lin, S.H., Wang, T.Y., 2003. Removal of metal ions from the complexed solutions in fixed bed using a strong-acid ion exchange resin. Chemosphere, 53(10), 1221-1228.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Kahrizi, H., Bafkar, A., Farasati, M., 2016. Effect of nanotechnology on heavy metal removal from aqueous solution. J. Cent. South Univ., 23(10), 2526-2535.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Kumar, U., Bandyopadhyay, M., 2006. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol., 97(1), 104-109.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Mahdavi, S., Jalali, M., Afkhami, A., 2015. Heavy metals removal from aqueous solutions by Al 2 O 3 nanoparticles modified with natural and chemical modifiers. Clean Technol. Environ. Policy, 17(1), 85-102.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Matouq, M., Jildeh, N., Qtaishat, M., Hindiyeh, M., Al Syouf, M.Q., 2015. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng., 3(2), 775-784.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T.K., Dutta, B.K., 2010. Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater., 179(1-3), 363-372.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Montanher, S.F., Oliveira, E.A., Rollemberg, M.C., 2005. Removal of metal ions from aqueous solutions by sorption onto rice bran. J. Hazard. Mater., 117(2-3), 207-211.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Omorogie, M.O., Babalola, J.O., Unuabonah, E.I., Gong, J.R., 2014. Solid phase extraction of hazardous metals from aqua system by nanoparticle-modified agrowaste composite adsorbents. J. Environ. Chem. Eng., 2(1), 675-684.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Órfão, J.J.M., Silva, A.I.M., Pereira, J.C.V., Barata, S.A., Fonseca, I.M., Faria, P.C.C., Pereira, M.F.R., 2006. Adsorption of a reactive dye on chemically modified activated carbons-influence of pH. J. Colloid Interface Sci., 296(2), 480-489.
CrossRef    Google Scholar    full-text PDF    Mendeley    
Rivera‐Utrilla, J., Bautista‐Toledo, I., Ferro‐García, M.A., Moreno‐Castilla, C., 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol., 76(12), 1209-1215.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Samadi, M.T., Saghi, M.H., Ghadiri, K., Hadi, M., Beikmohammadi, M., 2010. Performance of simple Nano Zeolite Y and modified Nano Zeolite Y in phosphor removal fromaqueous solutions. Iran. J. Health Environ., 3(1), 27-36.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Serencam, H., Ozdes, D., Duran, C., Tufekci, M., 2013. Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions. Environ. Monit. Assess., 185(7), 6003-6011.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Sfaksi, Z., Azzouz, N., Abdelwahab, A., 2014. Removal of Cr (VI) from water by cork waste. Arab. J. Chem., 7(1), 37-42.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Singha, B., Das, S.K., 2013. Adsorptive removal of Cu (II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. Biointerfaces, 107, 97-106.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Tounsadi, H., Khalidi, A., Abdennouri, M., Barka, N., 2015. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd (II) and Co (II) from aqueous solutions. J. Environ.l Chem. Eng., 3(2), 822-830.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Xu, X., Gao, B.Y., Yue, Q.Y., Zhong, Q.Q., 2010. Preparation of agricultural by-product based anion exchanger and its utilization for nitrate and phosphate removal. Bioresour. Technol., 101(22), 8558-8564.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Zhang, Z., Li, M., Chen, W., Zhu, S., Liu, N., Zhu, L., 2010. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ. Pollut., 158(2), 514-519.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Zhao, R., Li, X., Sun, B., Shen, M., Tan, X., Ding, Y., Jiang, Z., Wang, C., 2015. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J., 268, 290-299.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Zulkali, M.M.D., Ahmad, A.L., Norulakmal, N.H., 2006. Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour. Technol., 97(1), 21-25.
Volume 1, Issue 6
November and December 2020
  • Receive Date: 15 November 2020
  • Revise Date: 01 February 2021
  • Accept Date: 02 February 2021