Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry (Celtis Caucasica L.) seedlings under drought stress

Document Type : Research paper


1 Department of Forestry, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Research Institute of Forests and Rangelands, Tehran, Iran


Beside climate changes, drought stress has become a serious limitated factor for plant production and seedling growth. Arbuscular mycorrhizal fungi (AMF) symbiosis has proposed to improve the growth and water efficiency under limited-water condition. For this purpose, Caucasian Hackberry (Celtis Caucasica L.) seedlings inoculate with mycorrhizal fungi Rhizophagus intraradices and Funneliformis mosseae under well-watered and water deficient conditions. The mycorrhizal and non-mycorrhizal seedlings were treated under 75 % FC (as control), 50 and 25 % FC for 90-days. The data were analyzed by using two-way ANOVA (SAS 9.2). In order to determine the significance of means, Duncan’s multiple-range test (DMRT) was performed using SAS 9.2 software at P ≤ 0.05. A principal component analysis (PCA) was conducted to assess the distribution of water and AMF treatments across a biplot figure by Past software. As well as, cluster analysis was performed using d3heatmap, dendextend, and gplots packages in R according to the Ward method to classify traits and applied treatments. The Result showed that the plant growth parameters dry shoot weight, leaf area, seedling height, dry root weight, length of root, number of secondary root, and chlorophyll content were greater in mycorrhizal seedlings in comparison with non-inoculated seedlings under normal irrigation and drought treatments. AMF symbiosis decreased H2O2 and malondialdehyde (MDA) content in leaves, while the activity of antioxidant enzymes catalase and superoxide dismutase raised in the host mycorrhiza-inoculated seedlings. The positive correlation was observed between colonization rate and plant growth as well as antioxidant enzymes activity, remarkably. These results suggest that AMF symbiosis is a potential tool to alleviating the detriment created by drought stress on Caucasian Hackberry young seedling by elevating plant growth, reducing membrane lipid peroxidation, raising cell wall stability and increasing the activity of antioxidant enzymes.

Graphical Abstract

Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry (Celtis Caucasica L.) seedlings under drought stress


  • Arbuscular Mycorrhiza fungi had significant impact on plant growth parameters. 
  • Mycorrhiza symbiosis illustrate positive effect on plant tolerance to water deficiencies.
  • Symbiosis decreased H2O2 and malondialdehyde (MDA) content in leaves, while the activity of antioxidant enzymes catalase and superoxide dismutase raised in the host mycorrhiza-inoculated seedlings.


Main Subjects

Abbaspour, H., Saeidi-Sar, S., Afshari, H., Abdel-Wahhab, M.A., 2012. Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J. Plant Physiol., 169(7), 704-709.
Al-Karaki, G., McMichael, B.Z.A.K.J., Zak, J., 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14(4), 263-269.
Alscher, R.G., Erturk, N., Heath, L.S., 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53(372), 1331-1341.
Bachelot, B., Uriarte, M., McGuire, K.L., Thompson, J., Zimmerman, J., 2017. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species. Ecology, 98(3), 712-720.
Bailey-Serres, J., Mittler, R., 2006. The roles of reactive oxygen species in plant cells.
Benhiba, L., Fouad, M.O., Essahibi, A., Ghoulam, C., Qaddoury, A., 2015. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees, 29(6), 1725-1733.
Berruti, A., Borriello, R., Orgiazzi, A., Barbera, A.C., Lumini, E., Bianciotto, V., 2014. Arbuscular mycorrhizal fungi and their value for ecosystem management. Biodiversity: the dynamic balance of the planet. InTech, Rijeta, Croacia, 159-191.
Blum, A., 2011. Drought resistance–is it really a complex trait?. Funct. Plant Biol., 38(10), 753-757.
Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., San Segundo, B., 2014. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol., 165(2), 688-704.
Cartmill, D.L., Alarcón, A., Volder, A., Valdez-Aguilar, L.A., Arnold, M.A., Cartmill, A.D., 2012. Arbuscular mycorrhizal fungi alleviate growth of Ulmus parvifolia Jacq. at suboptimal planting depths. Sci. Hortic., 144, 74-80.
Chaturvedi, R., Favas, P.J., Pratas, J., Varun, M., Paul, M.S., 2018. Effect of Glomus mosseae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal (loid) stress. Int. J. Phytoremediat., 20(9), 885-894.
Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought—from genes to the whole plant. Funct. Plant Biol., 30(3), 239-264.
Doubková, P., Vlasáková, E., Sudová, R., 2013. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil, 370(1), 149-161.
Fageria, N.K., 2016. The use of nutrients in crop plants. CRC press.
Faghire, M., Baslam, M., Samri, S., Meddich, A., Goicoechea, N., Qaddoury, A., 2010. Effect of arbuscular mycorrhizal colonization on nutrient status, water relations and growth of date palm seedlings under water stress. Acta Hortic, 882, 833-838.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D.B.S.M.A., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Sustain. Agric., 153-188.
García‐Garrido, J.M., Ocampo, J.A., 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot., 53(373), 1377-1386.
Gharibi, S., Tabatabaei, B.E.S., Saeidi, G., Goli, S.A.H., 2016. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl. Biochem. Biotechnol., 178(4), 796-809.
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48(12), 909-930.
Göhre, V., Paszkowski, U., 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115-1122.
Golldack, D., Li, C., Mohan, H., Probst, N., 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front. Plant Sci., 5, 151.
Gong, M., Tang, M., Chen, H., Zhang, Q., Feng, X., 2013. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44(3), 399-408.
Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S.P., 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci., 6, 420.
Huang, C., Zhao, S., Wang, L., Anjum, S.A., Chen, M., Zhou, H., Zou, C., 2013. Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidant enzymes activities in hybrid ramie ('boehmeria nivea'L.) Under drought stress. Aust. J. Crop Sci., 7(5), 594. ISSN: 18352693
Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., Li, J., 2011. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil, 339(1), 391-399.
Kohler, J., Hernández, J.A., Caravaca, F., Roldán, A., 2008. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol., 35(2), 141-151.
Krishna, H., Das, B., Attri, B.L., Grover, M., Ahmed, N., 2010. Suppression of Botryosphaeria canker of apple by arbuscular mycorrhizal fungi. Crop Prot., 29(9), 1049-1054.
Lehmann, A., Leifheit, E.F., Rillig, M.C., 2017. Mycorrhizas and soil aggregation. In Mycorrhizal mediation of soil. 241-262.
Lehto, T., Zwiazek, J.J., 2011. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 21(2), 71-90.
Liu, T., Sheng, M., Wang, C.Y., Chen, H., Li, Z., Tang, M., 2015. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica, 53(2), 250-258.
Manchanda, G., Singh, R.P., Li, Z.F., Zhang, J.J., 2017. Mycorrhiza: creating good spaces for interactions. In Mycorrhiza-Function, Diversity, State of the Art. 39-60.
Mechri, B., Manga, A.G., Tekaya, M., Attia, F., Cheheb, H., Meriem, F.B., Braham, M., Boujnah, D., Hammami, M., 2014. Changes in microbial communities and carbohydrate profiles induced by the mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea L.). Appl. Soil Ecol., 75, 124-133.
Medrano, H., Tomás, M., Martorell, S., Escalona, J.M., Pou, A., Fuentes, S., Flexas, J., Bota, J., 2015. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev., 35(2), 499-517.
Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci., 9(10), 490-498.
Mo, Y., Wang, Y., Yang, R., Zheng, J., Liu, C., Li, H., Ma, J., Zhang, Y., Wei, C., Zhang, X., 2016. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci., 7, 644.
Nath, M., Bhatt, D., Prasad, R.,  Tuteja, N., 2017. Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In Mycorrhiza-eco-physiology, secondary metabolites, nanomaterials, 223-232.
Noctor, G., Mhamdi, A., Foyer, C.H., 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol., 164(4), 1636-1648.
Ouledali, S., Ennajeh, M., Zrig, A., Gianinazzi, S., Khemira, H., 2018. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol. Plant, 40(5), 1-13.
Pedranzani, H., Rodríguez-Rivera, M., Gutiérrez, M., Porcel, R., Hause, B., Ruiz-Lozano, J.M., 2016. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26(2), 141-152.
Porras-Soriano, A., Soriano-Martín, M.L., Porras-Piedra, A., Azcón, R., 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol., 166(13), 1350-1359.
Rapparini, F., Peñuelas, J., 2014. Mycorrhizal fungi to alleviate drought stress on plant growth. In Use of Microbes for the Alleviation of Soil Stresses, 1, 21-42.
Reddy, A.R., Chaitanya, K.V., Vivekanandan, M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol., 161(11), 1189-1202.
Requena, N., Perez-Solis, E., Azcón-Aguilar, C., Jeffries, P., Barea, J.M., 2001. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbial., 67(2), 495-498.
Ruiz‐Lozano, J.M., Collados, C., Barea, J.M., Azcón, R., 2001. Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J. Exp. Bot., 52(364), 2241-2242.
Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high‐salinity stresses using a full‐length cDNA microarray. Plant J., 31(3), 279-292.
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., Huang, Y., 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296.
Subramanian, K.S., Charest, C., 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza, 5(4), 273-278.
Van Der Heijden, M.G., Wiemken, A., Sanders, I.R., 2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plant. New Phytol., 157(3), 569-578.
Wu, Q.S., Zou, Y.N., 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ., 55(10), 436-442.
Wu, Q.S., He, X.H., Zou, Y.N., Liu, C.Y., Xiao, J., Li, Y., 2012. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul., 68(1), 27-35.
Xiao, X., Yang, F., Zhang, S., Korpelainen, H., Li, C., 2009. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol. Plant., 136(2), 150-168.
Zou, J.J., Li, X.D., Ratnasekera, D., Wang, C., Liu, W.X., Song, L.F., Zhang, W.Z., Wu, W.H., 2015. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell, 27(5), 1445-1460.