Changes in morphological and biochemical properties of Celtis caucasica L. mycorrhizal fungi-inoculated under drought stress condition

Document Type : Research paper


1 Department of Forestry, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Department of Forest, Research Institute of Forest and Rangeland, AREEO, Tehran, Iran


Zagros forest in west of Iran have been destroying recently due to climate changes, dust, pests, local people using, grazing livestock and used more than ecosystem capacity. Accordingly these regions need to be recovering by reforestation resistance seedlings. For this purpose, influence of different arbuscular mycorrhizal fungi (AMF) included; Rhizophagus intraradices and Funneliformis mosseae as exotic fungi and two native, Funneliformis geosporum and Claroideoglomus etunicatum, as well as non-mycorrhizal(control) investigate to produced resistance seedling of Celtis caucasica L. under three water regimes (optimal irrigation, 75 % of field capacity and water deficit, 50% and 25 % of field capacity) as factorial in a completely randomized design with ten replications. Mycorrhizal seedlings especial natives one, reveals that AMF significantly raised morphological and physiological traits sach as the fresh and dry weight of above and underground biomass, the length of the root, seedling height, colonization percentage, H2O2 and MDA content, CAT, SOD, POD activity, the content of chlorophyll a, b, total chlorophyll, and carotenoid. The concentration of H2O2 and MDA in inoculated plants was less than non-mycorrhizal plants under all irrigation regimes. The activity of antioxidant enzymes simultaneously increased with increasing drought stress, application of AMF caused a further increase in activity of them. The content of chlorophyll a, b, total chl, and carotenoid decreased with increasing water deficit. In AMF treatments, the content of these pigments was more in respect to control (non- mycorrhizal plants). Generally, we suggest that the effect of native mycorrhizal fungi was more and better than the exotic fungi and control. Thus, identifying the symbiosis between native mycorrhizal fungi and trees could be considered as an eminent step towards the restoration of degraded areas of plantations and forests.

Graphical Abstract

Changes in morphological and biochemical properties of Celtis caucasica L. mycorrhizal fungi-inoculated under drought stress condition


  • Mycorrhizal seedlings especial natives one, reveals that AMF significantly raised morphological and physiological traits
  • The activity of antioxidant enzymes simultaneously increased with increasing drought stress, application of AMF caused a further enhance in activity of them.
  • The content of chlorophyll a, b, total chl, and carotenoid decreased with increasing water deficit. In AMF treatments, the content of these pigments was more in respect to control (non- mycorrhizal plants).
  • Symbiosis decreased H2O2 and malondialdehyde (MDA) content in leaves, while the activity of antioxidant enzymes catalase and superoxide dismutase raised in the host mycorrhiza-inoculated seedlings.


Main Subjects

Abbott, L.K., Robson, A.D., 1985. The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus. Soil Res., 23(2), 253-261.
Al-Karaki, G.N., 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10(2), 51-54.
Alguacil, M.M., Hernández, J.A., Caravaca, F., Portillo, B., Roldan, A., 2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi‐arid soil. Physiol. Plant., 118(4), 562-570.
Amjadian, E., Zeinodini, A., Doğan, H., 2021. Effect of fertilizer management systems on growth and balance of nutrients in wheat cultivation. Cent. Asian J. Plant Sci. Innov., 1(2), 56-69.
Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res.6(9), 2026-2032.
Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399.
Ardalan, F., Haidari, M., Janati, K., Tekyekha, J., Amiri, S., Sajadi, A., 2013. The review of fire condition in Zagros forest and estimate carbon sequestration of plantation by endemic species in Northern Zagros forest (Marivan Region: West of Iran). Int. J. Biosci., 3(10), 240-251.
Asea, P.E.A., Kucey, R.M.N., Stewart, J.W.B., 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem., 20(4), 459-464.
Augé, R.M., Schekel, K.A., Wample, R.L., 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil, 99(2-3), 291-302.
Becana, M., Dalton, D.A., Moran, J.F., Iturbe‐Ormaetxe, I., Matamoros, M.A., C Rubio, M., 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant., 109(4), 372-381.
Benhiba, L., Fouad, M. O., Essahibi, A., Ghoulam, C., Qaddoury, A., 2015. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees29(6), 1725-1733.
Berruti, A., Borriello, R., Orgiazzi, A., Barbera, A.C., Lumini, E., Bianciotto, V., 2014. Arbuscular mycorrhizal fungi and their value for ecosystem management. Biodiversity: Dyn. Balance Planet. Tech, Rijeta, Croacia, 159-191.
Bever, J.D., Richardson, S.C., Lawrence, B.M., Holmes, J., Watson, M., 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett., 12(1), 13-21.
Bremner, J.M., 1965. Total nitrogen. Method. Soil Anal. Part 2 Chem. Microbiol. Properties, 9, 1149-1178.
Bundrett, M.C., Ashwath, N., Jasper, D.A., 1996. Mycorrhizas in the Kakadu region of tropical Australia. Plant Soil, 184(1), 173-184.
Cartmill, A.D., Valdez-Aguilar, L.A., Bryan, D.L., Alarcón, A., 2008. Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water. Sci. Hort., 115(3), 275-284.
Chance, B., Maehly, A.C. 1955. Assay of catalases and peroxidases. Meth. Enzymol., 2, 764-775.
Carina, V.T., Emilia, M.M., Miguel, U.S., Ortiz, D.R., Manjunatha, B., Thangaswamy, S., Mulla, S.I., 2016. Effect of Arbuscular mycorrhizal fungi (AMF) and Azospirillum on growth and nutrition of banana plantlets during acclimatization phase. J. Appl. Pharm. Sci., 6(06), 131-138.
Chaghakaboodi, Z., Kakaei, M., Zebarjadi, A., 2021. Study of relationship between some agro-physiological traits with drought tolerance in rapeseed (Brassica napus L.) genotypes. Cent. Asian J. Plant Sci. Innov., 1(1), 1-9.
Chapman, C.A., Chapman, L.J., Kaufman, L., Zanne, A.E., 1999. Potential causes of arrested succession in Kibale National Park, Uganda: growth and mortality of seedlings. Afr. J. Ecol., 37(1), 81-92.
CrossRef    Google Scholar    full-text PDF    Mendeley   
Corona, V., Aracri, B., Kosturkova, G., Bartley, G. E., Pitto, L., Giorgetti, L., Giuliano, G., 1996. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J., 9(4), 505-512.
Cruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal. Behav., 3(3), 156-165.
Dhindsa, R.S., Plumb‐Dhindsa, P.L., Reid, D.M., 1982. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant., 56(4), 453-457.
CrossRef    Google Scholar    full-text PDF    Mendeley    
Dixon, R.K., Mukerji, K.G., Chamola, B.P., Kaushik, A., 1997. Vesicular arbuscular mycorrhizal symbiosis in relation to forestation in arid land. Ann. For., 5(1), 1-9.
Farokhian, S., Nejad, E.T., Nejad, G.M., 2021. Studying the Effect of Biofertilizers on the yield of Sesamum indicum Genotypes under Drought Stress. Cent. Asian J. Plant Sci. Innov., 1(1), 32-38.
Foyer, C.H., Lelandais, M., Kunert, K.J., 1994. Photooxidative stress in plants. Physiol. Plant., 92(4), 696-717.
Fumanal, B., Plenchette, C., Chauvel, B., Bretagnolle, F., 2006. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France?. Mycorrhiza17(1), 25-35.
Gerdemann, J.W., Nicolson, T.H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc., 46(2), 235-244.
Ghasemi, M., Aelaei, M., Akbari Soltankohi, F., Minaei Chenar, H., Bahrami Rad, E., 2021. Studies on polyploidy induction for improvement of quality traits in ornamental and medicinal plants. Cent. Asian. J. Plant Sci. Innov., 1(2), 76-90.
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem.48(12), 909-930.
Giovannetti, M., Sbrana, C., Logi, C., 1994. Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol., 127(4), 703-709.
Haghshenas, H., Ghanbari Malidarreh, A., 2021. Response of yield and yield components of released rice cultivars from 1990-2010 to nitrogen rates. Cent. Asian J. Plant Sci. Innov., 1(1), 23-31.  
Hasanuzzaman, M., Nahar, K., Gill, S.S., Fujita, M., 2013. Drought stress responses in plants, oxidative stress, and antioxidant defense. Climate Change Plant Abiotic Stress Tolerance, 209-250.
He, Q., Bertness, M.D., Altieri, A.H., 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Let.16(5), 695-706
He, Z., He, C., Zhang, Z., Zou, Z., Wang, H., 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf. Biointerface.59(2), 128-133.
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125(1), 189-198.
Johnson, C.R., Hummel, R.L., 1985. Influence of mycorrhizae and drought stress on growth of Poncirus× Citrus seedlings. Hort. Sci., 20(4), 754-755.
Kahrizi, S., Kahrizi, S., Rashidi, F., Rashidi, N., 2021. Effect of 6-Benzylaminopurine on micropropagation of Nuphar lutea as an endangered species. Cent. Asian. J. Plant Sci. Innov., 1(2), 70-75.
Kapoor, R., Sharma, D. Bhatnagar, A.K., 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci. Hort., 116, 227-239.
Khanhasani, M., Akhavan, R., Sagheb-Talebi, K., Vardanyan, Z., 2013. Spatial patterns of oak species in the Zagrosian forests of Iran. Int. J. Biosci.3(8), 66-75.
Lee, M.R., Tu, C., Chen, X., Hu, S., 2014. Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant Microstegium vimineum. Biol. Invasions16(5), 1083-1093.
Leifheit, E. F., Veresoglou, S.D., Lehmann, A., Morris, E.K., Rillig, M.C., 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil374(1-2), 523-537.
López-Bucio, J., Cruz-Ramı́rez, A., Herrera-Estrella, L., 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol., 6(3), 280-287.
Maheshwari, R., Dubey, R.S., 2009. Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul., 59(1), 37-49.
Manjunath, A., Mohan, R., Bagyaraj, D.J., 1983. Response of citrus to vesicular-arbuscular mycorrhizal inoculation in unsterile soils. Canad. J. Bot., 61(10), 2729-2732.
Modanlo, H., Baghi, M., Ghanbari Malidarreh, A., 2021. Sunflower (Helianthus annuus L.) grain yield affected by fertilizer and plant density. Cent. Asian. J. Plant Sci. Innov., 1(2), 102-108.
Nouri, E., Breuillin-Sessoms, F., Feller, U., Reinhardt, D., 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One9(3), e90841.
Pagano, M.C., Zandavalli, R.B., Araújo, F.S., 2013. Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Appl. Soil Ecol., 67, 37-46.
Poss, J.A., Pond, E., Menge, J.A., Jarrell, W.M., 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil, 88(3), 307-319.
Sattarian, A., 2006. Contribution to the biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African species. PhD thesis Wageningen University, Wageningen, 142.
Selvaraj, T., Chellappan, P., 2006. Arbuscular mycorrhizae: a diverse personality. J. Cent. Eur. Agric., 7(2), 349-358.
Shah, M.A., Reshi, Z., Rashid, I., 2008. Mycorrhizosphere mediated mayweed chamomile invasion in the Kashmir Himalaya, India. Plant Soil312(1-2), 219-225.
Shah, M.A., Reshi, Z.A., Khasa, D.P., 2009. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot. Rev.75(4), 397-417.
Subramanian, K.S., Santhanakrishnan, P., Balasubramanian, P., 2006. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci. Hort.107(3), 245-253.
Tarafdar, J.C., Marschner, H., 1994. Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci. Plant Nutr., 40(4), 593-600.
Wu, Q., Xia, R. and Hu, Z., 2005. Effects of arbuscular mycorrhiza on drought tolerance of Poncirus trifoliata. J. Appl. Ecol., 16(3), 459-463.
Wu, Q.S., Zou, Y.N., 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ.55(10), 436-442.
Zeid, I.M., Shedeed, Z.A., 2006. Response of alfalfa to putrescine treatment under drought stress. Biol. Plant., 50(4), 635-640.