
 

91 

Central Asian Journal of Environmental Science and Technology Innovation 3 (2021) 91–101  

 

 

 

Estimation of groundwater depth using ANN-PSO, 

kriging, and IDW models (case study: Salman Farsi 

Sugarcane Plantation) 
 

Atefeh Sayadi Shahraki, Saeed Boroomand Nasab, Abd Ali Naseri *, Amir Soltani Mohammadi  

Department of Irrigation and Drainage, Shahid Chamran University of Ahvaz, Ahvaz, Iran 
 

Highlights                                                       Graphical Abstract
 

  

  

 

 

 

 

 

 

 

Article Info                                                     Abstract 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

*Corresponding author: abaalinaseri@yahoo.com (A.A. Naseri)

 RESEARCH PAPER 

• This research aims to simulate 

groundwater depth using IDW, kriging 

and neural network model integrated 

with particle swarm optimization 

algorithm in Salman Farsi Sugarcane 

Agro-Industry. 

• Among the models used, the highest 

accuracy of groundwater depth 

estimation was related to the ANN-PSO 

model. 

• Among the Kriging and IDW models 

used, the accuracy of the Kriging model 

was more than the IDW model. 

• The purpose of this study, evaluate the 

accuracy of models for use when it is 

not possible to measure data or need to 

estimate data in the future. 

Appropriate management of groundwater resources requires accurate information 

about the characteristics of the groundwater table, spatial distribution of its 

characteristics, and the constant depth of the water table and its fluctuations. One of 

the most important issues in the quantitative management of groundwater resources 

is the estimation of water table using the data collected from the observation well 

network. In this study, to simulate the depth of groundwater Salman Farsi 

Sugarcane Plantation, three methods of Artificial neural network-integrated with 

particle swarm optimization algorithm, geostatistics (Kriging) and IDW was used. 

Inputs data include evapotranspiration, air temperature, precipitation and 

geographic location. The results showed that the highest simulation accuracy of 

groundwater depth in Salman Farsi Sugarcane Plantation was related to the ANN-

PSO model with the highest R
2
 (0.95) index and lowest RMSE and MAE (to 1.05 

and 1.11) values. Also, among the Kriging and IDW models used, the accuracy of 

the Kriging model was more than the IDW model. Due to the acceptable accuracy 

of the results of the three models, the water resource planner and -maker in this 

field can apply this optimum interpolated groundwater depth to monitor the 

spatiotemporal fluctuation of groundwater depth in this area by updating its data. 
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1. Introduction 

Groundwater resources are a significant source for agricultural, drinking, and industrial needs, especially in 

arid and semiarid regions (Nayak et al. 2006; Ahmadi and Sedghamiz, 2007). Surface resources are usually 

unstable and unsteady flows that are peaked after precipitation and gradually become inaccessible and costly to 

maintain. Appropriate management of groundwater resources requires accurate information about the 

characteristics of the groundwater table, the spatial distribution of its characteristics, and the constant depth of 

the water table and its fluctuations. Understanding the depth of the groundwater in each region is crucial and 

inevitable in sustainable irrigation and agricultural projects and planning (Gundogdu and Guney, 2007). 

Investigating the depth of groundwater as a spatio-temporal variable is very important in water resources 

planning. This requires a continuous and accurate estimate of groundwater depth. To date, many models have 

been used to predict groundwater depth, including intelligence and geostatistical models. Over the past years, 

extensive studies have been conducted to apply geostatistical and artificial intelligence models to groundwater 

modeling. Geostat was first founded by George Matron in the 1960s.  

Building on local change and considering each point's dependence on neighboring points are features that 

have made extensive use of it (Lu et al., 2004). These features distinguish it from classical statistics and allow for 

more realistic modeling of environmental phenomena and parameters. In the other study, three methods of 

mediation of distance spacing weighting, radial basis functions, and kriging to predict temporal and spatial 

variations of groundwater depth was compared in the Minkin Desert in northern China (Yue et al., 2009). 

Comparison of the observed values with the interpolated values showed that the conventional kriging method 

is the optimal method for groundwater depth detection. Xiao et al., 2016 used data from 30 observation wells 

based on geostatistical theory to estimate groundwater level reduction in Beijing. The results showed that the 

simple kriging method is more suitable than other methods. In the other research the kriging method, radial 

functions, and IDW for interpolation of groundwater depth in the Minqinoasis region of China was evaluated, 

and the results shown concluded that the simple kriging method was more appropriate for this area (Sun et al., 

2009). The capability of conventional kriging and neural-fuzzy inference networks was investigated for 

interpolating groundwater levels in a free aquifer in northern Iran (Kholghi and Hosseini, 2009; Kyoung-Jae et 

al., 2003).  

The results showed that the neural-fuzzy inference model is more efficient in estimating groundwater level 

than conventional kriging. Jeihouni et al., 2015 used conventional kriging as a linear geostatistical estimator and 

two intelligent methods including artificial neural networks and adaptive fuzzy inference system for spatial 

analysis of groundwater electrical conductivity. The results showed that the adaptive fuzzy model has the 

highest accuracy among the models. Regarding the application of geostatistical methods can be mentioned the 

differnt researches (Varouchakis et al., 2019; Klein et al., 2017). The use of intelligence models for simulating 

groundwater depth is also rapidly increasing, due to the ease of application and high accuracy of these models 

in approximating nonlinear and complex mathematical equations. Artificial neural network is one of the 

intelligence models that come from the human brain. The results of using artificial neural networks as an 

intelligence model in studies show that this model has high ability to discover the relationship between data 

and pattern recognition (Asadollahfardi et al., 2012; Musavi-Jahromi and Golabi, 2008; Sreekanth et al., 2009). 

Study in Hyderabad, India showed that artificial neural network has a good capability for estimating 

groundwater level with ground mean square error of 4.5 m and explanation coefficient of 0.93.  

From the forward and backward neural network methods with five different algorithms was used to predict 

groundwater level in an elevated tropical lagoon in India (Karthikeyan et al., 2013). They concluded that the 

forward neural network performed better with the Fletcher Reverse Conjunction Algorithm (GAFRC) than 

other simulation methods and algorithms. Also, the groundwater level using multiple linear regression and 

artificial neural network techniques was predicted at 17 sites in Japan (Sahoo and Jha, 2013). These results 

showed that in predicting the temporal-spatial distribution of groundwater level, ANN outperformed linear 

regression and presented better results. For the predict groundwater level in Lilakh plain used from artificial 
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neural network and fuzzy-neural network (Rashidi et al., 2015). Results showed that the ANN model with three 

input parameters of average groundwater level, precipitation, temperature and monthly evaporation has the 

best results in the region. 

Artificial neural network model due to back propagation training method sometimes reduce the accuracy of 

simulation and its main drawback is early convergence to local optimal. To solve this problem, the PSO 

algorithm is used to train the artificial neural network model. The application of neural network model 

optimization with evolutionary algorithms in groundwater discussion can be found in other studies (Shiri and 

Kisi, 2011; Traore and Guven, 2012; Moashrei et al., 2012; Balavalikar et al., 2018; Tapoglou et al., 2012). The 

present study aims to simulate groundwater depth using IDW, kriging and neural network model integrated 

with particle swarm optimization algorithm in Salman Farsi (West of Iran). 

 

2. Materials and Methods  

2.1. Case study  

Salman Farsi Sugarcane Agro-Industry is located in 40 kilometers south of Ahvaz city, Khuzestan province, 

in Iran. Its agricultural area is 12,000 hectares, with 10,000 hectares annually harvested, and 2,000 hectares are 

grown and re-cultivated. Salman Farsi Agro-Industry from the north is limited to the Debal Khazaee sugarcane 

agro-industry and from the east to the Ahvaz-Abadan road and Karun River is west of it. The research area has 

a dry climatic with very hot summers and mild winters. The coldest month is in January and the warmest is 

July (The highest temperature is 47 °C and the lowest is 7.5 °C). The only source of irrigation in the farm is the 

large Karun River. The position of the Salman Farsi Sugarcane Agro-Industry is shown in Fig. 1. 

 

 
Fig. 1. Geolocation of the study area. 

 

2.2. Required data  

In this study, 160 observation wells were constructed in the study area and groundwater depth data were 

collected during two years from July, 2016 and twice each month. Evapotranspiration, air temperature and 

precipitation data were also collected during this time period and used as inputs for artificial neural network 

model and geographical location of wells for Kriging and IDW models. Fig. 2 shows the location of observation 

wells in the area. 

 

2.3. Geostatistics  

Geostatistics is a branch of statistics in which the unknown value of a quantity in points with known 

coordinates can be obtained by using the values of the same quantity in other points with known coordinates. 

This science consists of a series of studies examining the variations of a phenomenon in time and space, and is 
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capable of modeling that phenomenon in a definite or uncertain temporal and spatial manner. Geostatistics, by 

providing a suitable model for describing these variables, while taking into account their structural and 

stochastic variability components, is able to determine the average value of these quantities in a range, estimate 

their value at a particular location, and map the distribution of variables. In this study, geostatistical ground-

based mediation method called kriging was used to predict groundwater depth (Rajaee et al., 2019). 

 

 

Fig. 2. Location of observation wells. 

 

2.4. Kriging Method  

Kriging is one of the most important and common methods of geostatistical estimation. This method relies 

on the weighted moving average logic and the best unbiased linear estimator, which in addition to estimating 

values, also determines the estimation error rate at each point (Goovaerts, 1997). The equation used for 

estimating the kriging method is in accordance with eq. (1). 

 

2.5. Reverse Distance Weighting (IDW) 

In this method, like kriging, the value of a variable at a point not sampled from its adjacent points is 

estimated using the relation. In this method, weights are determined with respect to the distance of each known 

point to the unknown point, and regardless of the position and how the points are scattered around the point of 

estimation. As a result, the nearer the points will be given more weight and the farther points will be given less 

weight. In fact, the shorter the distance, the greater the impact. This method assigns a weight to each of the 

measured samples for estimating the unknown point (equs. 2 and 3): 

 

𝑍∗ = ∑ 𝜆𝑖
𝑛
𝑖=1 . 𝑍(𝑥𝑖)                                                                                                                                 (1) 

 

𝑍∗ = ∑ 𝜆𝑖
𝑛
𝑖=1 . 𝑍(𝑥𝑖)                                                                                                                                 (2) 

 

𝜆𝑖 =
1

ℎ𝑖
𝑛                                                                                                                                                     (3) 

 

Where 𝑍∗ is the estimated spatial variable value, 𝑍(𝑥𝑖) is the spatial variable observed at the point, 𝑖 is the 

statistical weight assigned to the sample 𝑥𝑖 and indicates the significance of the i-point estimate, ℎ𝑖 the distance 

between the points 𝑥𝑖and the point at which the variable is estimated and 𝑛 is the distance power (Childs, 2004). 
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2.6. Artificial Neural Network Model (ANN)  

The key element of this pattern is the new structure of the data processing system consisting of a large 

number of the data processing systems consisting of many elements (neurons) with strong internal 

communications that work harmoniously together to solve specific problems. Processing the experimental data, 

artificial neural networks transfer the knowledge or the law behind the data to the network structure; a training 

process. Using computer programming knowledge, data structures can be designed which act as a neuron. 

Then it can be trained by creating a network of interconnected artificial neurons, creating a training algorithm 

for network and applying the algorithm to the network. In general, a neural network is made up of three layers: 

The input layer only receives data and acts the same as independent variable. Thus the number of input layer 

neurons is determined based on the nature of the problem and depends on the number of independent 

variables. The output layer acts similar to a dependent variable and the number of its neurons depends on the 

number of dependent variables. But the hidden layer, unlike the input and output layers, represents nothing 

and is only an intermediate result in the process of calculating the output value. Fig. 3 shows the overview of an 

artificial neural network. 

 

 

Fig. 3. Overview of an artificial neural network. 

 

The design and implementation stages of neural network model include:  

1. Measuring and standardization of neural network model input data. 

2. The model designation, specifying the architecture, the number of layers (In this study, three-layer model is 

used) and determining the appropriate activation function for the intended neural network model (tangent 

sigmoid and logarithmic sigmoid is used as the activation function). 

3. Training the network using a part of data (to determine the amount of weights and biases). 

4. Testing and evaluating the network using the remaining data. 

5. Displaying the output and simulation results of the model. 

 

In this study, 80 percent and 20 percent of data were considered respectively for training and model 

validation. Training is a problem while using artificial neural network which is trained by backward error 

propagation method. In this study, using Particle Swarm Optimization Algorithm (PSO) method, this problem 

was attempted to be resolved. 

 

2.7. Particle Swarm Optimization Algorithm (PSO)  

The principle of this algorithm is based on the fact that swarm members in a search space are adopted 

towards the past successful regions and also are affected from the success of the neighboring members. This 

idea is explicitly stated as follows: 
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Each swarm member is called a "particle" which shows a potential solution, and in search space, changes the 

location and updates its velocity based on the flight experiences of itself and its neighboring particles, which 

help it to gain a better position. Particle i is shown as 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷). The situation with the best fitting 

function will be recorded as the best current position. This position is considered as 𝑃𝑖 = (𝑝𝑖1 , 𝑝𝑖2, … , 𝑝𝑖𝐷) and the 

corresponding fitting function is called and recorded as 𝑃𝑏𝑒𝑠𝑡𝑖. The best general position in the swarm is related 

to the best fitting function, and called 𝐺𝑏𝑒𝑠𝑡𝑖 and recorded as 𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, … , 𝑝𝑔𝐷). Velocity or the rate of 

position change of particle i, is shown as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝐷). During the replication process, velocity and 

position of the particle i will be updated in accordance with the following equation: 

 

𝑉𝑖𝑑(𝑡 + 1) = 𝐾 (𝑉𝑖𝑑(𝑡) + 𝑟𝑎𝑛𝑑(0, 𝜑1). (𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + 𝑟𝑎𝑛𝑑(0, 𝜑2). (𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)))                                         (4) 

 

𝑋𝑖𝑑(𝑡 + 1) = 𝑋𝑖𝑑(𝑡) + 𝑉𝑖𝑑(𝑡 + 1)      𝑑 = 1, 2, … , 𝐷                                                                                                              (5) 

 

𝐾 =
2

𝜑−2+√𝜑2−4𝜑
                                                                                                                                     (6) 

 

In where 𝜑 = 𝜑1 + 𝜑2   : 

K is the contraction factor and a function of φ1 and φ2 and constant acceleration values of φ1 and φ2 shows 

the weighting of particles random acceleration for tendency towards the personal and global best position. 

rand(0, φ1) and rand(0, φ2) functions, respectively produce random numbers in the range of [0, φ1] and [0, φ2]. 

According to equation (5), particles current flight velocity includes three parts: The first part indicates the 

previous velocity of the particle, and the second and the third parts show single particle and swarm model. In 

single particle model, each member is separated and used personal thoughts and experiences independently; 

while in the swarm model, members move towards success based on the effective experiences of their 

neighbors (Eberhart and Shi, 2000). Although the PSO algorithm is able to quickly find the area of feasible 

solution, but the convergence rate will be severely reduced getting to this area. To solve this problem, equation 

(4) is amended as follows: 

 

𝑉𝑖𝑑(𝑡 + 1) = 𝜔 (𝑉𝑖𝑑(𝑡) + 𝑐1𝑟𝑎𝑛𝑑(0, 𝜑1). (𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + 𝑐2𝑟𝑎𝑛𝑑(0, 𝜑2). (𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)))                                   (7) 

 

In the above equation, 𝜔, 𝑐1 and𝑐2 respectively represent inertia weight, a positive parameter called cognitive 

parameter, and a positive parameter called social parameter. Using inertia weight parameter leads to a 

compromise between global and local discovery capabilities of the category. A great inertia weight is a stimulus 

to enlarge the amount of velocity vector of particles throughout the solution spaces (moving towards solution 

spaces of the search space not experienced previously); while a smaller inertia weight narrows the solution 

spaces in the current small area. In fact, lower weight makes the search continue with higher accuracy in areas 

experienced in the past. A proper selection of 𝜔 ensures the establishment of the optimum balance between 

local and global solution spaces and consequently increases the efficiency of the algorithm. Thereby the amount 

of 𝜔 is determined equal to one at the beginning of the search, and gradually goes to zero. 

 

2.8. Model evaluation criteria  

To determine the accuracy of the models the values of Root Mean Square Error (𝑅𝑀𝑆𝐸), Mean Absolute 

Error (𝑀𝐴𝐸) and Determination Coefficient (𝑅2) was used: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2                                                                                                                    (8) 
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𝑀𝐴𝐸 = 100 ∗
1

𝑛
∑|𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|                                                                                                                               (9) 

 

𝑅2= 1- 
∑(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

∑ 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
2  − 

𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑛

                                                                                                                   (10) 

 

In the above equation, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 , 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  and n are respectively the representatives of  predicted values, 

observed values and the number of data. The more the values of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 go to zero and the value of 𝑅2 

goes to one, the more accurate the model will be. 

 

3. Results and Discussion 

 In this study, 160 observation wells were constructed in the study area and groundwater depth information 

was extracted twice a month from July 2016 to simulate the depth of groundwater in Salman Farsi Sugarcane 

Plantation. Evapotranspiration, air temperature and precipitation data were also collected during this time 

period and used as inputs for artificial neural network model and geographic location of wells for Kriging and 

IDW models. Table 1 shows the statistical characteristics of groundwater depth in the study area. According to 

Table 1, the skew coefficient is between -1 and +1, indicating that the depth of groundwater has normal 

distribution during the measurement period. 

 

Table 1. Statistical specifications of groundwater depth in Salman Farsi Sugarcane Plantation. 

Parameter Unit Maximum Minimum Average Standard 

deviation 
Skewness Elongation 

Depth of groundwater cm 255 39.07 134.38 37.52 0.58 1.39 

 

 In this study, a ground-based statistical mediation method called kriging, inverse distance weighting (IDW) 

and artificial neural network modeling was used to simulate groundwater depth. Evapotranspiration data, air 

temperature and precipitation were used as inputs for the artificial neural network model and geographic 

location of wells were used as inputs for Kriging and IDW models. For the ANN model, 80% of the data (ie, 

data from 120 observation wells) for model training and 20% of data (data from 40 observation wells) for model 

testing Used. It is worth noting that the distribution of wells for training and testing has been trial and error. 

The results of the calculated statistics between the simulated and measured values are presented in Table 2. 

 

Table 2. Results of statistics computed between simulated and measured values. 

Statistical model / index RMSE        MAE R2 

ANN-PSO 1.05 1.11 0.95 

Kiriging 1.72 2.01 0.83 

IDW 3.54 4.02 0.77 

 

 Also the simulation accuracy of the kriging model is higher than the IDW model, which is consistent with 

the results of many studies (Yue et al., 2009; Ahmadi and Baghbanzadeh Dezfouli, 2012; Desbarats et al., 2002). 

Given that in IDW method all points are used to calculate the unknown value and in geostatistical methods by 

adjusting the variogram for all data it try to calculate the amount of variance over distance, one can expect that 

these methods, with all their advantages, have a major drawback. This weakness is the use of a general rule to 

calculate the unknown points. 

 Also, Figs. 4 and 5, show the diagram fit between the observed and simulated values in the GIS software 

environment for the two kriging and IDW models and the optimized artificial neural network model in the 

Excel software environment. Fig. 6 shows the comparison between the observed and simulated values for the 

two kriging and IDW models and the ANN model. 
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Fig. 4. Diagram fit between observed and simulated values using two models: a) kriging, b) IDW. 

 

 
Fig. 5. Diagram fit between observed and simulated values using ANN-PSO model. 

 

        

 
Fig. 6. Comparison between observed and simulated values. 
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 Fig. 7 shows the groundwater zoning maps using both Kriging and IDW methods in the GIS software 

environment. According to the plotted maps, the highest depth of groundwater is in the northwest and north 

sections of Salman Farsi Sugarcane Plantation. Groundwater decreases gradually from north to south. 

 

      
Fig. 7. Groundwater zoning map using both kriging and IDW methods. 

 

Conclusion 

 Groundwater level data are particularly important in modeling the groundwater system, water resources 

management and drought. Since most of the groundwater flow models require water level data to simulate the 

behavior of the groundwater system, the number of wells observed in most study areas is limited and costly to 

construct. Therefore, there is a pressing need for different methods of simulation. In this study, the methods of 

artificial intelligence (ANN-PSO) and geostatistics (kriging) and IDW were used with evapotranspiration, air 

temperature, precipitation and geographic inputs for simulating the depth of Salman Farsi Sugarcane 

Plantation. The results showed that the highest accuracy of groundwater depth simulation was related to 

combined neural network model with particle aggregation optimization algorithm, with the highest R2 index 

and the lowest value of RMSE and MAE. Also, in the case of the Kriging and IDW models, the simulation 

accuracy of the Kriging model was higher than the IDW model. 
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